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Abstract

The influence of temperature variations on the rank of a NIR dataset, has been investigated by comparing the
results of principal component analysis (PCA) and evolving factor analysis (EFA), applied to two datasets measured
at constant temperature and varying temperature. After temperature correction, the concentration profiles and spectra
were obtained with PCA, SIMPLISMA and the orthogonal projection approach (OPA). The same resolution methods
were used on the dataset measured at constant temperature. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The understanding of how a reaction proceeds
is at the core of chemistry. Typically, analytical
techniques used to ‘follow’ the reaction progress
involve sampling and to some extend perturbation
of the reaction medium. A technique that lends
itself to on-line non-invasive monitoring is NIR
spectroscopy. NIR spectroscopy is an ideal pro-
cess technique as it requires no sample prepara-
tion and using suitable sample interfaces
measurements from heterogeneous and homoge-

neous reactions can be made. The NIR spectra
that result from monitoring the reaction process
contain both physical and chemical information
and often require the application of statistical
approaches to extract meaningful information
from the spectroscopic data.

Different computational methods have been de-
veloped for analysing spectral data obtained from
evolutionary processes such as processes moni-
tored as a function of time. The objective of these
resolution techniques is to resolve the data into
the concentration profiles and the spectra of the
components present. In general they can be
classified into two groups: hard-modelling and* Corresponding author.
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soft or self-modelling methods. The advantage of
self-modelling in comparison with hard-modelling
is that no prior information about the shape of
the pure spectra and/or concentration profiles is
required. The self-modelling approaches encom-
pass methods based on principal component anal-
ysis (PCA) and methods which compare rows or
columns of the data matrix with a reference.
Methods such as evolving factor analysis (EFA)
[1], fixed size moving window evolving factor
analysis (FSW-EFA) [2], eigenstructure tracking
analysis (ETA) [3], heuristic evolving latent pro-
jections (HELP) [4–6] and iterative target trans-
formation factor analysis (ITTFA) [7] belong to
the first group, while SIMPLISMA [8–10] and the
orthogonal projection approach (OPA) [11] can
be classified in the second group. These self-mod-
elling approaches require a bilinear data structure,
which means that the effects due to different
compounds are additive and linear with
concentration.

In this paper two sets of data are considered.
The first concerns the NIR spectra obtained as a
function of time during the polymorph conversion
of species P1 to P2 at constant temperature. The
second describes the same process, carried out
with varying temperature. The aim is to be able to
obtain the concentration profiles in both cases.
This is made more difficult in the second case
because temperature has an influence on the NIR
spectra and this must be corrected for to achieve
the objective of the analysis.

2. Theory

2.1. Data pretreatment

Variation within individual near-infrared spec-
tra is the result of the physical characteristics and
the chemical composition of the sample. There-
fore the raw spectra are mathematically pretreated
in order to eliminate the differences between them
due to physical sources. Several mathematical
transformations such as the standard normal vari-
ate transformation (SNV) [12], detrending [12],
linear baseline correction and second derivation
are often used for this purpose. The advantage of

the second derivation method in comparison with
SNV, detrending and linear baseline correction is
that it enhances small differences between similar
spectra. This can be useful to detect selective
wavelengths in the spectral data. Therefore, the
convolution method of Savitzky and Golay [13]
with a second order polynomial and a window
size 11 was used in this paper.

2.2. Analysis of the data

2.2.1. Principal component analysis
The NIR spectra were collected on a NIRSys-

tems 6500 spectrophotometer using a reflectance
fibre-optic probe. The typical wavelength range is
measured at 700 wavelengths (1100–2500 nm).
The spectra can be represented as points in the
wavelength space. PCA is performed to visually
display the spectra in a two dimensional latent
variable space defined by principal component 1
(PC1) and principal component 2 (PC2).

2.2.2. Resolution techniques

2.2.2.1. E6ol6ing factor analysis [1]. The principle
of EFA is to follow the change of the rank of a
data matrix as a function of the ordered variable,
which for evolutionary processes is typically time.
For this purpose PCA is performed on an increas-
ing data matrix, starting with the first or last row
and adding one row at the time. The logarithms
of the singular values (SV) are plotted as a func-
tion of the ordered variable. To make the graph
clearer, all points calculated for the first SV are
connected with a line; analogously, lines are also
drawn to connect the second SV and so on. If one
starts with the first row the method is called
forward EFA. The graph in theory, indicates the
time were each compound appears. Starting with
the last row the method is called backward EFA.
The plot must now be read in reverse order, from
right to left, to obtain information about the
disappearence of the components. The number of
components, or the rank of the data matrix, can
be determined by visual inspection of the EFA
graphs. The number of SV’s rising out of the
noise level indicate the number of components
present in the data matrix.
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2.2.2.2. SIMPLISMA. SIMPLISMA [8–10], a
self-modelling approach, is based on the selection
of what are called pure variables. They can be
found either in the wavelength or in the time
direction of the measured spectral data matrix
and are defined as variables of which the intensi-
ties are due to only one of the compounds present
in the data set.

If the SIMPLISMA approach is applied in the
wavelength direction, the intensities measured for
each selected pure wavelength represent the rela-
tive amounts of the unknown compound, for
which the wavelength is selected, in the mixture
spectra of the data matrix. Performing SIM-
PLISMA in the time direction results in the selec-
tion of regions with pure spectra.

Once the pure variables (wavelengths or times)
have been determined, the data set can be re-
solved into the pure spectra and the concentration
profiles using a least squares procedure. The data
matrix X (n×m) can be expressed by the follow-
ing equation:

X=CA (1)

in which the columns of the matrix C (n×k)
contain the relative concentrations of the k pure
components in the mixture spectra and the rows
of the matrix A (k×m) contain the pure spectra.
If SIMPLISMA is performed in the wavelength
direction, the matrices X and C are known, and
the pure spectra A can be obtained by using the
pseudo-inverse (C%C)−1C% of the matrix C:

A= (C%C)−1C%X (2)

The concentration profiles are then recalculated
using the pseudo-inverse A%(AA%)−1 of the matrix
A:

C=XA%(AA%)−1 (3)

The selection of the pure variables and more
specifically of pure spectra has been extensively
explained in [8], therefore, only a brief description
is given here. The purity of each spectrum, pi , is
calculated with the following equation:

pi=wi×
si

mi+a
i=1, ..., n (4)

where mi is the mean [8] and si the standard
deviation [8] of each spectrum xi. The offset a is a
percentage of the maximum mean value (mi). It is
included to avoid that spectra with low mean
intensity obtain high purity values. The weight of
each spectrum, wi , is a measure for the dissimilar-
ity of the spectrum with the selected ones and it is
calculated as the determinant of the dispersion
matrix Yi ·Yi% of Yi, which contains the pure spec-
tra selected and the normalised spectrum zi. The
spectra in the matrix Yi are normalised according
to the equation [8]:

zij=
xij


m(s2
i + (mi+a)2)

for i=1, …, n and j

=1, …, m (5)

Initially, when no spectrum has been selected
the matrix Yi contains only the normalised spec-
trum. The weight, wi, is then equal to the length
of the normalised spectrum. The purity of each
spectrum is calculated and plotted as function of
time. The spectrum with the highest purity is
selected and included in the matrix Yi after nor-
malisation. The matrix Yi now contains two spec-
tra, the first selected one and spectrum zi. The
determinant of the dispersion matrix of Yi mea-
sures the area of the parallellogram determined by
spectrum zi and the first selected spectrum. The
higher the area, the higher the weight and purity
value for spectrum zi. The weight factors thus
avoid the selection of variables close to the se-
lected ones.

To confirm that all the information has been
substracted, the total signal spectrum can be cal-
culated [8]. The total signal spectrum, t, is a linear
combination of the pure spectra of the com-
pounds present in the mixture:

t=C1S1+C2S2+ ···+CnSn (6)

where C1, C2,…, Cn are the total concentrations of
the compounds and S1, S2,…, Sn are the molar
absortivities at the different wavelengths for each
compound. When the proper number of pure
variables has been selected, the approximated to-
tal intensity spectrum should be equal to t. The
criterion used to measure the difference is the
square root of the relative sum of squares differ-
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ences between the total signal spectrum and the
approximated total signal spectrum.

In our context the NIR spectra of P1 and P2

are expected to be very similar, so that no pure
zones in the spectra will be found. According to
the literature, SIMPLISMA can be applied in
the wavelength direction after second derivation.
The selection of pure (or at least the purest pos-
sible) wavelengths is performed on the positive
part of the inverted second derivative spectra.
The inversion (i.e. change of sign) is useful be-
cause in this way maxima in the second deriva-
tive spectra coincide with maxima in the original
spectra [9,10]. For the resolution the original
dataset is used in combination with the selected
pure variable intensities from the positive part
of the inverted second derivative data.

2.2.2.3. Orthogonal projection approach [11].
OPA is based on the determination of the dis-
similarity. The dissimilarity of each spectrum is
defined as the determinant of the dispersion ma-
trix Yi ·Yi% of Yi, which contains initially the
mean spectrum of the data matrix, normalised
to length=1, as a reference and the unchanged
measured spectrum i. The determinant of the
dispersion matrix of Yi measures the area of the
parallellogram determined by spectrum i and the
mean spectrum. The first spectrum selected is
thus the one most dissimilar with respect to the
mean spectrum. In the next step, the first se-
lected spectrum, normalised to length=1, is
taken as a reference in Yi. The second dissimi-
larity plot represents the dissimilarity of each
spectrum with respect to the first selected one.
The process is repeated including the first and
the second spectrum selected, normalised to
length=1, as references in the matrix Yi. The
procedure continues adding new reference spec-
tra, until the dissimilarity plot represents only
noise. The number of selected spectra equals the
number of absorbing compounds in the system.
Those selected spectra are then used for the de-
composition of the matrix into the concentration
and pure spectra matrices, using an alternating
least-squares approach.

3. Data

Two NIR datasets, measured on-line in a reac-
tion vessel, were available. The spectra of both
matrices were measured at 700 different wave-
lengths (from 1100 to 2500 nm). Signal attenua-
tion due to the fibre optic necessitates the
truncating of spectral data from 2200 to 2500 nm.
The matrix obtained at a constant temperature of
30°C contains 80 spectra. The matrix obtained
with variation in temperature contains 127 spec-
tra. The first 15 spectra of this matrix were mea-
sured at an ambient temperature of 21°C. The
temperature rises slowly from then on and reaches
60°C at the time that spectrum 38 is measured.
This temperature is maintained until spectrum 115
is measured. From this time on the cooling pro-
cess starts which ends at a temperature of 25°C.

4. Results and discussion

4.1. Influence of thermal effects upon rank
analysis

The reaction in which the unwanted polymorph
(P1) is converted into the prefered one (P2) is
followed by measuring NIR-spectra at regular
time intervals. The score plot obtained for the
second derivative spectral data, obtained when the
conversion is performed at a constant temperature
of 30°C, is shown in Fig. 1a. Monitoring the
reaction performed with variation in temperature
results in the score plot presented in Fig. 1b.

The score plot obtained after PCA on the sec-
ond derivative spectra of the combined matrices is
shown in Fig. 1c. The spectra measured with
varying temperature are distinguished from those
measured at constant temperature, by adding the
value 80 to each spectrum number. This means
that the measured spectra 1, 13, 39, 115, 121,…,
127 correspond with the numbers 81, 93, 119, 195,
201,…, 207 in the score plots.

Because P1 is converted in P2, the sum of the
concentrations at each time is constant. The spec-
tra measured in the selective chromatographic
regions of P1 and P2 will therefore be plotted as
two clusters. The mixture spectra of P1 and P2 will
be situated between these two clusters.
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When the conversion is performed at 30°C two
clusters 1–32 and 64–80 corresponding with P1

and P2 are respectively obtained. The mixture
spectra of P1 and P2 (33–63) are situated between
these two clusters on a straight line. The variation
in the data is almost completely explained by PC1,
which indicates that the variation due to composi-
tion changes is mainly explained by this principal
component. The conversion with varying temper-
ature shows three clusters (81–93, 119–195 and
201–207). The small cluster (81–93) represents
spectra of P1 taken at a temperature of 21°C. The
mixture spectra 94–113 measured at different
temperatures varying from 21 to 51.5°C are also
situated on a straight line. The big cluster contain-
ing the scores 119–195 corresponds with the spec-
tra obtained at a temperature of 60°C. Spectra
196–200 are taken during the gradual cooling of
the sample. The scores 201–207, representing the
end product P2 at 25°C, coincide with the cluster
64–80 corresponding with P2 at 30°C. Due to the
variation between the scores 119–200 mainly ex-
plained by PC2, one can conclude that these spec-
tra represent the change of the spectra of P2 with
temperature. Thus, the spectra 114–118 also rep-
resents P2 at 53–58°C. The clusters 1–32 and
81–93 indicating P1 at 30 and 21°C are found in
each others neighbourhoods but do not coincide,
which must be due to the temperature difference
of 9°C.

To confirm the above mentioned temperature
influences on the spectra of P1 and P2 a compari-
son was made between the raw mean spectra,
normalised to maximum intensity, of the clusters
observed in Fig. 1c (Fig. 2). In Fig. 2a the mean
spectra of P1 (..) and P2 (–) both at 30°C are
shown. The spectral regions 1600–1700 and
2100–2200 nm show some minor bands which
will be used to further distinguish the spectrum of
P1 from that of P2. The mean spectra of the
clusters 1–32 (–) and 81–93 (..) are given in Fig.
2b. The shape of both spectra is similar. The small
differences in absorbance values are due to a
temperature difference of 9°C. The same conclu-
sions can be drawn from Fig. 2c which represents
P2 at 30°C (–) and at 25°C (..). In Fig. 2d the
mean spectrum of the cluster 119–195 (..) is plot-
ted together with the mean spectrum of the cluster

Fig. 1. (a) Score plot of second derivative spectra measured at
constant temperature. (b) Score plot of second derivative
spectra measured at varying temperature. (c) Score plot ob-
tained after PCA on the second derivative spectra of the
combined matrices (constant (..) and varying (+ ) tempera-
ture).
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Fig. 2. Comparison of the raw mean spectra, normalised to maximum intensity, of the clusters observed in Fig. 1. (a) Mean spectra
of the cluters 1–32 (..) and 64–80 (–). (b) Mean spectra of the clusters 1–32 (–) and 81–93 (..). (c) Mean spectra of the clusters
64–80 (–) and 201–207 (..). (d) Mean spectra of the clusters 64–80 (–) and 119–195 (..).

64–80 (–). The spectral regions 1600–1700 and
2100–2200 nm indicate that the mean spectra
both correspond with P2. Nevertheless it might be
argued that spectral changes of this type are due
to a temperature dependent equilibrium of dis-
tinct chemical species. The cluster 119–195 could
thus be due to an unexpected third chemical
component giving a true chemical rank of three.
In this case the simplest and most probable inter-
pretation is to attribute the third source of vari-
ability to the change of the spectrum of P2 due to
temperature. The difference between the spectra is
the temperature effect on the spectrum of P2. The
process of conversion from P1 to P2 results from
microsolution of the polymorph in the organic

solvent.
In Fig. 3 the forward EFA graphs are shown

for both matrices after second derivation. The
number of chemical compounds can be deter-
mined visually from these plots as the number of
SVs with a sharp increase from the noise. The
noise level is estimated as the largest SV which is
caused by noise and obtained when PCA is per-
formed on the whole data matrix. For the matrix
measured at constant temperature the noise level
is calculated as the logarithm of the third SV. The
noise level for the matrix with temperature effects
is considered to be the logarithm of the fourth SV.
Thus, the number of chemical compounds or the
chemical rank of the matrix, measured at constant
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temperature, is=2. For the matrix obtained with
varying temperature the observed rank is three.

Variation in the temperature during the poly-
morph conversion thus results in an additional
source of variation. Therefore, it is necessary to
correct the spectral data for temperature influ-
ences before further conclusions can be drawn.

4.2. Resolution of the data measured at constant
temperature

The spectra for P1 and P2 are shown in Fig. 2a.
The concentration profiles (Fig. 4) are obtained
from the score plot of the second derivative spec-
tra (Fig. 1a). The scores 1 and 80 representing the
first and last spectrum measured define the vector
on which the scores of the spectra 1–80 are
projected. Plotting the distances between the score
of spectrum 80 and the orthogonal projections of
the scores 1–80 in function of time results in the
concentration profile for P1. The profile for P2 is
obtained by plotting the distances between score 1
and the orthogonal projections of the scores 1–
80. The distances for P1 and P2 are calculated
according to the Eq. (7) and Eq. (8), respectively.

distancei=
((si−s80)T · (s1−s80))

s1−s80 i=1, 2, …, 80

(7)

Fig. 4. Concentration profiles, normalised to maximum inten-
sity, for P1 (..) and P2 (–) obtained from the score plot of the
second derivative spectra.

distancei=
((si−s1)T · (s80−s1))

s80−s1 i=1, 2, …, 80

(8)

where s1, si and s80 are the vectors of the spectra
1, i and 80 in the two dimensional latent variable
space defined by PC1 and PC2.

Applying the SIMPLISMA approach on the
positive part of the inverted second derivative
spectra results in the selection of the wavelengths
1644 and 2126 nm (The offset used is 1% of the
maximum mean value). The selected wavelengths
are situated in the spectral regions where the
minor absorption bands in the original spectra of
P1 and P2 were observed. The square root of the
relative sum of squares of the residuals (rssq)
between the total intensity spectrum and its least
squares approximation calculated with the se-
lected wavelengths 1644 and 2126 nm is 0.1915.
Due to the selection of a third wavelength 2196
nm that does not reduce the rssq significantly
(rssq=0.1691), we can confirm that only two
compounds are present. The significance of the
change in the rssq values is determined by visual
inspection of these values. The SIMPLISMA ap-
proach is an interactive process, which means that
the selection of pure variables depends on the
judgement of the spectroscopist. The spectra are
obtained using Eq. (2). The matrix C contains the
selected pure variable intensities from the positive

Fig. 3. (a) EFA graph obtained for forward calculation, for
the second derivative matrix measured at constant tempera-
ture. (b) EFA graph obtained for forward calculation, for the
second derivative matrix measured with varying temperature.
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part of the inverted second derivative spectra in
its columns. The matrix X contains the original
spectra. Using the resulting pure spectra in combi-
nation with the original data matrix X, we can
recalculate the concentration profiles using Eq.
(3). The pure spectra are very well comparable
with the ones shown in Fig. 2a. The concentration
profiles, shown in Fig. 5, are not comparable with
the profiles of Fig. 4. In the concentration profiles
obtained with SIMPLISMA negative concentra-
tion values are observed for P2. This artefact
shows that the resolution with SIMPLISMA ap-
plied on the positive part of the inverted second
derivative spectra do not give good results.

OPA was also used on the second derivative
spectra. The results are shown in the Fig. 6a–c.
The dissimilarity of each spectrum with respect to
the mean spectrum is plotted in Fig. 6a. The first
spectrum selected is the one at time 73. Each
spectrum is then compared with the spectrum at
time 73 and the dissimilarity is plotted as a func-
tion of time in Fig. 6b. The spectrum at time 13
has the highest dissimilarity value and because of
this, it is the second spectrum selected. Each
spectrum’s dissimilarity with respect to the al-
ready selected spectra (times 73 and 13) is deter-
mined and plotted in Fig. 6c. This plot shows the
highest dissimilarity value at time 49. Due to the
much lower dissimilarity values in this plot, com-

Fig. 6. Results of OPA applied on the second derivative
spectra measured at constant temperature.

pared with the ones obtained in the plot before,
spectrum 49 does not represent a third compo-
nent. The spectra and concentration profiles are
shown in the Fig. 7a,b respectively. The differ-
ences between the spectra are situated in the same
spectral regions, 1600–1700 and 2100–2200 nm,
as in the spectra shown in Fig. 2a. The concentra-
tion profiles are comparable with those of Fig. 4.

4.3. Temperature correction

The spectral data matrix measured with varia-
tion in temperature, Xmeasured, can be represented
as the sum of a bilinear data matrix, Xcorrected,
containing the spectra at a constant temperature
and a matrix, T, containing the temperature influ-
ences for each spectrum. The matrix can thus be
expressed by the following equation:

Xmeasured=Xcorrected+T (9)

Fig. 5. Normalised concentration profiles for P1 (..) and P2 (–)
resulting from the resolution (SIMPLISMA) of the data mea-
sured at constant temperature.
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As discussed in the previous paragraph the
chemical rank of the matrix Xcorrected is two. The
rank of Xmeasured is three due to thermal effects.
The temperature effects will therefore be modelled
by a matrix of rank one and substracted from the
measured data to obtain the matrix which con-
tains the chemical information at a constant refer-
ence temperature.

The temperature correction is performed to ob-
tain the spectra in the matrix Xcorrected at a con-
stant reference temperature of 25°C and is based
on the following assumptions:
1. The polymorphs P1 and P2 are assumed to

Fig. 8. (a) Spectra of P2 at 60°C (..) and 25°C (–). (b)
Temperature sensitivity spectrum (ts).

Fig. 7. (a) Pure second derivative spectra for P1 (..) and P2 (–)
resulting from the application of OPA on the data measured at
constant temperature. (b) Concentration profiles for P1 (..) and
P2 (–) resulting from the resolution (OPA) of the data mea-
sured at constant temperature.

have similar molecular structures. Due to this
their response to temperature change is sup-
posed to be equal.

2. Spectrum 195 represents 100% P2 measured at
60°C.

3. The thermal effects are linear with
temperature.

The temperature sensitivity spectrum (ts),
shown in Fig. 8b, is the influence on the spectra of
both polymorphs when the temperature changes
from the highest temperature measured during the
conversion to the reference temperature. Taken
into account the first two assumptions, it was
obtained by calculating the differences in ab-
sorbance values between the spectra 195 and 207
(Fig. 8a). Spectrum 195 represents P2 at the
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highest temperature (60°C) and spectrum 207 is P2

at the reference temperature (25°C).
Because the assumption was made that the

thermal effects change linearly with temperature
[14], the spectra are corrected according to the
following equation:

Xcorrected=

Xmeasured− (((t−25°C)/(60°C−25°C))%.ts) (10)

in which t is an array of dimension (127×1)
containing the temperatures for each spectrum.

The score plot obtained after second derivation
of the temperature corrected data is shown in Fig.
9. This plot now reveals two clusters 81–93 and
114–207 corresponding with P1 and P2, respec-
tively. Furthermore the forward EFA graph of
the temperature corrected second derivative data
in Fig. 10 shows only two significant SV’s instead
of three, which means that there are two sub-
stances present. These observations permit us to
conclude that the temperature correction is
succesful.

4.4. Resolution of temperature corrected data

The raw mean spectra, normalised to maximum
intensity, for the clusters observed in the score
plot of the second derivative spectra (Fig. 9) are
comparable with those in Fig. 2a. The concentra-
tion profiles in Fig. 11 are obtained from the score

Fig. 10. EFA graph obtained for forward calculation, for the
temperature corrected second derivative matrix.

plot of the second derivative spectra (Fig. 9),
using Eqs. (7) and (8).

The SIMPLISMA approach (offset 1%) used
on the positive part of the inverted second deriva-
tive spectra results in the selection of the same
wavelengths, 2126 and 1644 nm, as for the data
measured at constant temperature. The spectra
are comparable with those in Fig. 2a. In the
concentration profiles (Fig. 12) negative concen-
tration values are again observed for P2. Further-
more it seems that the values for the zero
component region of P1 are estimated to be high.

Fig. 11. Concentration profiles, normalised to maximum inten-
sity, for P1 (..) and P2 (–) obtained from the score plot of the
second derivative spectra.

Fig. 9. Score plot after second derivation of the temperature
corrected data.
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Fig. 12. Concentration profiles for P1 (..) and P2 (–) resulting
from the SIMPLISMA approach applied on the temperature
corrected data.

Fig. 13. Results of OPA applied on the temperature corrected
second derivation spectra.

These artefacts can be the result of the fact that
the selected wavelength 2126 nm is not completely
pure or because the negative part of the inverted
second derivative spectra was not taken into
account.

The results of OPA applied on the second
derivative spectra are shown in the Fig. 13a,c.
Two spectra were selected: the first one at time 1
and the second one at time 118. The second
derivative spectra obtained after resolution of the
data matrix are comparable with the ones shown
in Fig. 7a. The differences between the spectra are
situated in the same spectral regions. The concen-
tration profiles, shown in Fig. 14, are comparable
with the profiles of Fig. 11.

5. Conclusion

The pure spectra and concentration profiles of
the two polymorph substances can be obtained.
The temperature correction proposed in this pa-
per can be used when the spectra of the com-
pounds present in the mixture are very similar.
The resolution in this case can be performed by
applying PCA and OPA (in the time direction).
The SIMPLISMA approach performed in the
wavelength direction on the positive part of the
inverted second derivative spectra does not appear

to provide good results. Alternative SIMPLISMA
procedures are needed when second derivative
data are applied.

Fig. 14. Concentration profiles for P1 (..) and P2 (–) resulting
from the resolution (OPA) of the temperature corrected data.
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